Conteúdo Lipídico da Biomassa de Chlorella homosphaera Cultivada de Modo Heterotrófico sob Diferentes Concentrações de Carbono e Nitrogênio

Shana Pires Ferreira, Jorge Alberto Vieira Costa

Resumen


O crescente interesse no estudo do cultivo de microalgas tem sido realizado visando à produção de biomassa tanto para uso na elaboração de alimentos quanto para a obtenção de compostos bioativos e medicinais com alto valor no mercado mundial. Estes são empregados especialmente no desenvolvimento de alimentos funcionais, por suas propriedades nutricionais e farmacêuticas. O objetivo deste estudo foi avaliar o efeito da concentração das fontes de carbono (glicose, C6H12O6) e nitrogênio (NaNO3) no crescimento heterotrófico e na produtividade lipídica da microalga Chlorella homosphaera. O planejamento fatorial completo utilizado foi do tipo 22 com três repetições no ponto central. Os fatores de estudo foram as concentrações de glicose (5, 10 e 15 g.L-1) e de NaNO3 (0,5; 1,0 e 1,5 g.L-1) e as respostas analisadas foram as concentrações de lipídeos totais e de biomassa, totalizando sete experimentos. O cultivo realizado com 5 g.L-1 de glicose e 1,5 g.L-1 de NaNO3 foi o que apresentou maior produção de biomassa (1,22 g.L-1) e maior produtividade lipídica (13,07 mg.L-1.d-1), com predominância dos ácidos graxos palmítico (C16:0 - 23,6 %p/p) e linoléico (C18:1n9 - 22,4 %p/p).

Palabras clave


Alga verde, óleo de microalga, glicose, NaNO3, batelada alimentada

Texto completo:

PDF (Português (Brasil))

Referencias


Adarme-Vega, T.C., D.K.Y. Lim, M. Timmins, F.

Vernen, Y. Li & P.M. Schenk. 2012. Microalgal

biofactories: a promising approach towards sustainable

omega-3 fatty acid production. Microbial Cell Factories

: 1-10.

Alyabyev, A.Ju., N.L. Loseva, L.Kh. Gordon, I.N.

Andreyeva, G.G. Rachimova, V. I. Tribunskih A.A.

Ponomareva & R.B. Kemp. 2007. The effect of

changes in salinity on the energy yielding processes of

Chlorella vulgaris and Dunaliella maritima cells.

Thermochimica Acta 458: 65–70.

Aslan, S. & I.K. Kapdan. 2006. Batch kinetics of

nitrogen and phosphorus removal from synthetic

wastewater by algae. Ecological Engineering 28: 64–70.

Borowitzka, M.A & L.J. Borowitzka (EDS.). 1988.

Micro-algal biotechnology. Cambridge. New York:

Cambridge University Press.

Cataldo, D.A., M. Haroon, L.E. Schrader & Youngs,

V.L. 1975. Rapid colorimetric determination of nitrate in

plant tissue by nitration of salicylic acid.

Communications in Soil Science and Plant Analysis 6:

–80.

Chen, C.-Y., J.-S. Chang, H.-Y. Chang, T.-Y. Chen, J.-

H. Wu, & W.-L. Lee. 2013. Enhancing microalgal

oil/lipid production from Chlorella sorokiniana CY1 using

deep-sea water supplemented cultivation medium.

Biochemical Engineering Journal 77: 74– 81.

Costa, J.A.V., E.M. Radmann, V.S. Cerqueira, G.C.

Santos & M. N. Calheiros. 2006. Perfil de ácidos

graxos das microalgas Chlorella vulgaris e Chlorella

minutissima cultivadas em diferentes condições.

Alimentos e Nutrição Araraquara 17: 429-436.

Folch, J., M. Lees & G.H. Sloane Stanley. 1957. A

simple method for the isolation and purification of total

lipides from animal tissues. Journal of Biological

Chemistry 226: 497-509.

Heredia-Arroyo, T., W. Wei & B. Hu. 2010. Oil

accumulation via heterotrophic/mixotrophic Chlorella

protothecoides. Applied Biochemistry and

Biotechnology 162: 1978–1995.

Hsieh, C.H.& W.T. Wu. 2009. Cultivation of microalgae

for oil production with a cultivation strategy of urea

limitation. Bioresource Technology 100: 3921-3926.

Huang, G., F. Chen, D. Wei, X. Zhang & G. Chen.

Biodiesel production by microalgal biotechnology.

Applied Energy 87: 38-46.

Isleten-Hosoglu, M., I. Gultepe & M. Elibol. 2012.

Optimization of carbon and nitrogen sources for

biomass and lipid production by Chlorella saccharophila

under heterotrophic conditions and development of Nile

red fluorescence based method for quantification of its

neutral lipid content. Biochemical Engineering Journal

: 11-19.

Krienitz, l., C. Bock, P.K. Dadheech & T. Proschold

Taxonomic reassessment of the genus

Pires Ferreira & Vieira Costa (2017) Conteúdo lipídico e biomassa de Chlorella homosphaera

Mychonastes (Chlorophyceae, Chlorophyta) including

the description of eight new species. Phycologia 50: 89–

Lee, J.-Y., C. Yoo, S-Y. Jun, C-Y. Ahn & H.-M. Oh.

Comparison of several methods for effective lipid

extraction from microalgae. Bioresource Technology

: S75–S77.

Liang, Y., N. Sarkany & Y. Cui. 2009. Biomass and

lipid productivities of Chlorella vulgaris under

autotrophic, heterotrophic and mixotrophic growth

conditions. Biotechnology Letters 31: 1043–1049.

Liu, Z.-Y., G.-C. Wang & B.-C. Zhou. 2008. Effect of

iron on growth and lipid accumulation in Chlorella

vulgaris. Bioresource Technology 99: 4717–4722.

Martin-Jezequel, V., M. Hildebrand & M.A.

Brzezinski. 2000. Silicon metabolism in diatoms:

implications for growth. Journal of Phycology 36: 821-

Metcalfe, L.D., A.A. Schimitz & J.R. Pelka. 1966.

Rapid preparation of fatty acid esters from lipids for gas

chromatography analysis. Analytical Chemistry 38: 514-

Morais, M.G. & J.A.V. Costa. 2007. Carbon dioxide

fixation by Chlorella kessleri, Chlorella vulgaris,

Scenedesmus obliquus and Spirulina sp. cultivated in

flasks and vertical tubular photobioreactors.

Biotechnological Letters 29: 1349–1352.

Nelson, D.L & M.M. Cox. 2011. Princípios de

Bioquímica de Lehninger. 5ª ed. Editora Artmed S.A.

Porto Alegre. 1273p.

O’Grady, J. & J.A. Morgan. 2011. Heterotrophic

growth and lipid production of Chlorella protothecoides

on glycerol. Bioprocess and Biosystems Engineering

: 121–125.

Perez-Garcia, O., Y. Bashan & M.E. Puente. 2011.

Organic carbon supplementation of municipal

wastewater is essential for heterotrophic growth and

removing ammonium by the microalga Chlorella

vulgaris. Journal of Phycology 47: 190–199.

Richmond, A. 2004. Handbook of Microalgal Culture.

Blackwell Science.

Rippka, R., J. Deruelles, J.B. Waterbury, M.

Herdman & R.Y. Stanier. 1979. Generic Assignments,

Strain Histories and Properties of Pure Cultures of

Cyanobacteria. Journal of General Microbiology 111: 1-

Shen, Y., W. Yuan, Z. Pei & E. Mao. 2010.

Heterotrophic Culture of Chlorella protothecoides in

Various Nitrogen Sources for Lipid Production. Applied

Biochemistry and Biotechnology 160: 1674–1684.

Song, M., H. Pei, W. Hua & G. Maa. 2013. Evaluation

of the potential of 10 microalgal strains for biodiesel

production. Bioresource Technology 141: 245–251.

Wang, Y., T. Chen & S. Qin. 2012. Heterotrophic

cultivation of Chlorella kessleri for fatty acids production

by carbon and nitrogen supplements. Biomass and

bioenergy 47: 402-409.

Wu, Q.Y., S. Yin, G. Sheng & J. Fu. 1994. New

discoveries in study on hydrocarbons from thermal

degradation of heterotrophically yellowing algae.

Science in China Series B: Chemistry 37: 326–335.

Xu, H., X.L. Miao & Q.Y. Wu. 2006. High quality

biodiesel production from a microalga Chlorella

protothecoides by heterotrophic growth in fermenters.

Journal of Biotechnology 126: 499–507.

Yokochi, T., D. Honda, T. Higashihara & T. Nakahara.

Optimization of docosahexaenoic acid production

by Schizochytrium limacimum SR21. Applied

Microbiology and Biotechnology 49: 72–76.


Enlaces refback

  • No hay ningún enlace refback.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.